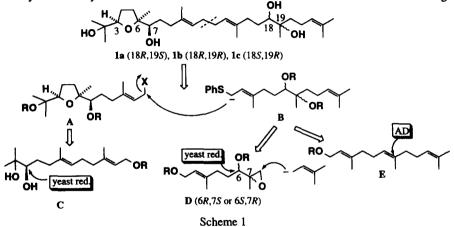


PII: S0040-4039(97)00992-1

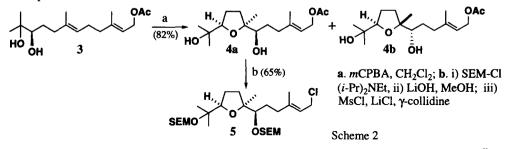
## Enantioselective Synthesis of (3R,6S,7R,18R,19S)-, (3R,6S,7R,18R,19R)-, and (3R,6S,7R,18S,19R)-Quassiols A. A Comment on the Stereochemistry of Natural Quassiol A


Mitsuaki Kodama,\* Suzuyo Yoshio, Tomoki Tabata, Yuka Deguchi, Yasumi Sekiya, and Yoshiyasu Fukuyama

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan

Abstract: (3R,6S,7R,18R,19S)-, (3R,6S,7R,18R,19R)-, and (3R,6S,7R,18S,19R)-Quassiols A were synthesized enantioselectively by using baker's yeast reduction and asymmetric dihydroxylation, but their optical properties were not identical to that of natural quassiol A. Stereostructure of natural quassiol A was proposed. © 1997 Elsevier Science Ltd.

Quassiol A (1) is a triterpene ether isolated together with its 18-monoacetate, quassiol B (2), from *Quassia* multiflora.<sup>1)</sup> Although the plane structure has been determined on the basis of spectroscopic analyses, its stereostructure including absolute stereochemistry has not yet been clarified except for the relative configuration at C-3, C-6, and C-7 as shown. In order to determine the absolute stereostructure, we synthesized (3R,6S, 7R,18R,19S)-1a, (3R,6S,7R,18R,19R)-1b, and (3R,6S,7R,18S,19R)-1c, enantioselectively. Although their optical properties were not consistent with those of natural product, we would like to propose the enantiomer of 1a for the stereostructure of natural quassiol A.

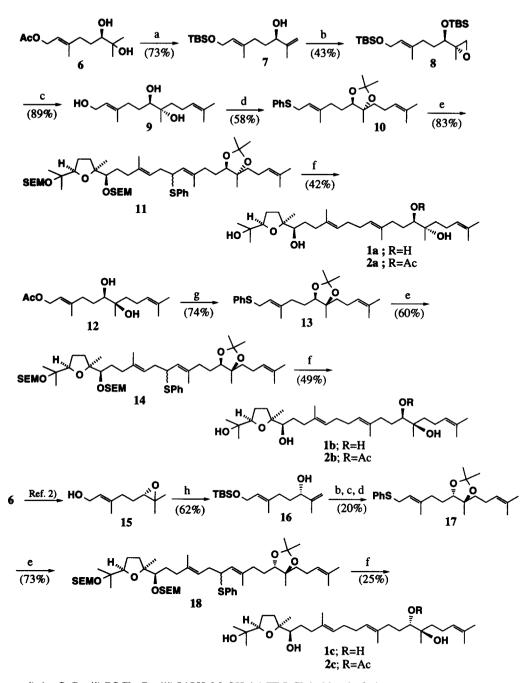

The retro-synthetic analysis is shown in scheme 1. The molecule 1 is divided into two C-15 segments A



4627

and **B** which would be derived from farnesol or geraniol derivatives -C, D, E- in enantioselective manner using baker's yeast reduction<sup>2)</sup> and asymmetric dihydroxylation  $(AD)^{3)}$  as the chirality induction method.

The synthesis of left-half segment A is illustrated in scheme 2. (10R)-10,11-Dihydroxyfarnesyl acetate (3) derived from farnesol in high enantiomeric purity<sup>2</sup> was treated with *m*-chloroperbenzoic acid to yield two diastereomeric tetrahydrofuran derivatives 4a and 4b in ca. 1 : 1 ratio. The stereochemistry was determined by applying modified Mosher's method<sup>4,5)</sup> unequivocally. The less polar (3R, 6S, 7R)-diol 4a was then converted in three steps into a chloride 5.




The right-half segment (6R,7S)-B was synthesized through D as follows. The known (R)-diol  $6^{2}$  was transformed into the allylic alcohol 7 by acetylation, dehydration, hydrolysis, and selective silylation of primary alcohol. Epoxidation of 7 using Sharpless' method<sup>6)</sup> took place stereoselectively to give (S)-epoxide 8 as the major product. Thus obtained 8 was reacted with prenyl Grignard reagent in the presence of cuprous iodide to afford the triol 9 in high yield after desilylation. The 1,2-diol part of 9 was protected as an acetonide and the terminal hydroxyl group was converted into phenyl sulfide giving 10.

Reaction of lithio-anion of 10 with 5 afforded the coupling product 11 in high yield. Desulfurization followed by the purification with AgNO<sub>3</sub>-impregnated silica-gel chromatography and the hydrolysis of SEM and acetonide protecting groups furnished (3R,6S,7R,18R,19S)-quassiol A (1a) whose <sup>1</sup>H and <sup>13</sup>C NMR spectra were indistinguishable from those of natural quassiol A. The optical rotation of 1a ( $[\alpha]_D + 8.3^\circ$ ) was very close to that of natural quassiol A ( $[\alpha]_D - 9.8^\circ$ )<sup>1</sup> with opposite sign. However, comparison of the optical rotation of 18-monoacetate disclosed that synthetic 2a ( $[\alpha]_D + 8.4^\circ$ ) and natural 2 ( $[\alpha]_D + 4.9^\circ$ )<sup>1</sup> are not enantiomeric each other.

In order to clarify the relative configuration at C-18 and C-19, (6R,7R)-13 was prepared from the known diol 12<sup>7)</sup> and reacted with the chloride 5 as described above. Similar desulfurization and deprotection of the coupling product 14 afforded (3R,6S,7R,18R,19R)-quassiol A (1b). The <sup>1</sup>H and <sup>13</sup>C NMR spectra of 1b were apparently different from those of natural quassiol A,<sup>8)</sup> which revealed that quassiol A has *anti* 1,2-diol moiety at C-18 and C-19.

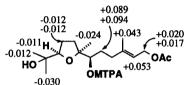
Finally, we challenged to the synthesis of (3R,6S,7R,18S,19R)-quassiol A (1c). The (S)-epoxide 15, readily available from 6 was converted to an allylic alcohol 16, which was then transformed into the sulfide 17 by the same procedure described above. Coupling of 17 with the chloride 5 followed by the similar desulfurization and deprotection gave rise to 1c. Although the <sup>1</sup>H and <sup>13</sup>C NMR spectra of 1c was again identical to those of natural product, the optical rotations of 1c ([ $\alpha$ ]<sub>D</sub> +0.9°) and its 18-acetate 2c ([ $\alpha$ ]<sub>D</sub> +1.1°) were completely



**a.** i) Ac<sub>2</sub>O, Py, ii) POCl<sub>3</sub>, Py, iii) LiOH, MeOH, iv) TBS-Cl, imidazole; **b.** i) VO(acac)<sub>2</sub>, t-BuOOH, ii) TBS-Cl, imidazole; **c.** i) Me<sub>2</sub>C=CHCH<sub>2</sub>MgCl, CuI, ii) *n*-Bu<sub>4</sub>NF; **d.** i) DMP, PPTS, ii) MsCl, LiCl,  $\gamma$ -collidine, iii) PhSNa; **e.** *n*-BuLi, DABCO, **5**; **f.** i) Na, t-BuOH, ii) SiO<sub>2</sub>-5%AgNO<sub>3</sub> chromat. iii) TsOH; **g.** i) DMP, PPTS, ii) LiOH, MeOH, iii) MsCl, LiCl,  $\gamma$ -collidine, iv) PhSNa; **h.** i) TBS-Cl, imidazole, ii) Al(*i*-PrO)<sub>3</sub>, Tol.

Scheme 3

different from those of natural products, 1 and 2.


Thus, we have synthesized three stereoisomers corresponding to quassiol A and propose the enantiomer of **1a** as the most probable stereostructure of natural quassiol A on the basis of the facts that <sup>1</sup>H and <sup>13</sup>C NMR spectral data of **1a** as well as the specific rotation are well consistent with those of natural product.<sup>9</sup>

We are grateful to Prof. W. F. Tinto, University of the West Indies, for various data of quassiol A. This work was supported by a Grant-in-Aid for a Scientific Research (No. 08680642) from the Ministry of Education, Science and Culture of Japan.

## **References and Notes**

- a. Tinto, W. F.; McLean, S.; Reynold, W. F.; Carter, C. A. G. *Tetrahedron Lett.* 1993, 34, 1705-1708
  b. Miller, S. L.; Tinto, W. F.; McLean, S.; Reynolds, W. F.; Yu, M.; Carter, C. A. G. *Tetrahedron* 1995, 51, 11959-11966.
- 2) Kodama, M.; Minami, H.; Mima, Y.; Fukuyama, Y. Tetrahedron Lett. 1990, 31, 4025-4026.
- 3) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. -S.; Kwong, H. -L.; Morikawa, K.; Wang, Z. -M.; Xu, D.; Zhang, X. -L. J. Org. Chem. 1992, 57, 2768-2771.
- 4) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096; Kusumi, T. J. Syn. Org. Chem. Jpn. 1993, 51, 462-470.

5)  $\triangle \delta (= \delta_s - \delta_{R})$  values of MTPA ester of **4a**:



As the following NMR data reveal, quassiol A has  $(3R^*, 6S^*, 7R^*)$ -configuration.

| -               | 1, 25                          | 2               | 3                              | 4               | 5               | 6               | 7                              | 26                             |
|-----------------|--------------------------------|-----------------|--------------------------------|-----------------|-----------------|-----------------|--------------------------------|--------------------------------|
|                 | <sup>13</sup> C <sup>1</sup> H | <sup>13</sup> C | <sup>13</sup> C <sup>3</sup> H | <sup>13</sup> C | <sup>13</sup> C | <sup>13</sup> C | <sup>13</sup> C <sup>1</sup> H | <sup>13</sup> C <sup>1</sup> H |
| 4a              | 25.96 1.11                     | 72.64           | 85.98 3.80                     | 27.53           | 33.53           | 87.17           | 77.35 3.43                     | 23.01 1.14                     |
|                 | 27.01 1.20                     |                 |                                |                 |                 |                 |                                |                                |
| <b>4b</b>       | 25.21 1.12                     | 72.14           | 86.65 3.75                     | 27.72           | 34.88           | 88.02           | 76.98 3.38                     | 22.79 1.13                     |
|                 | 27.72 1.16                     |                 |                                |                 |                 |                 |                                |                                |
| 1               | 25.93 1.10                     | 72.62           | 85.87 3.79                     | 27.54           | 33.29           | 87.24           | 77.44 3.44                     | 23.25 1.12                     |
|                 | 27.04 1.19                     |                 |                                |                 |                 |                 |                                |                                |
| 7-epi <b>1a</b> | 25.90 1.10                     | 72.68           | 86.33 3.82                     | 27.55           | 35.83           | 86.91           | 77.83 3.35                     | 25.41 1.11                     |
|                 | 27.01 1.20                     |                 |                                |                 |                 |                 |                                |                                |

6) Rossiter, B. E.; Verhoeven, T. R.; Sharpless, K. B. Tetrahedron Lett. 1979, 4733-4736.

7) Vidari, G.; Dapiaggi, A.; Zanoni, G.; Garlaschelli, L. Tetrahedron Lett. 1993, 34, 6485-6488.

8) <sup>1</sup>H and <sup>13</sup>C NMR data of 1, 1a, and 1b around the diol part (in CD<sub>3</sub>OD):

|    | 17<br><sup>13</sup> C | <sup>18</sup> <sup>13</sup> C <sup>1</sup> H | 19<br><sup>13</sup> C | 20<br><sup>13</sup> C | <sup>29</sup><br><sup>13</sup> C <sup>1</sup> H |
|----|-----------------------|----------------------------------------------|-----------------------|-----------------------|-------------------------------------------------|
| 1  | 30.52                 | 78.13 3.27                                   | 75.35                 | 39.37                 | 22.01 1.09                                      |
| 1b | 30.75                 | 77.93 3.32                                   | 75.58                 | 39.16                 | 22.27 1.10                                      |
| 1a | 30.61                 | 78.20 3.28                                   | 75.42                 | 39.44                 | 22.05 1.10                                      |

9) In the private communication, Prof. Tinto, who has isolated quassiols A and B, agreed with the opinion that the stereostructure of quassiol A is the enantiomer of 1a after our results have been presented. The reason for the inconsistency of optical rotation between 2 and 2a is not clear.

(Received in Japan 28 April 1997; revised 14 May 1997; accepted 16 May 1997)